Preparation of Chiral Fluorine Compounds from $(2\underline{S}, 3\underline{S})-3-$ Phenylglycidol

Seiichi TAKANO, * Masashi YANASE, and Kunio OGASAWARA
Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980

Some potentially useful chiral fluorine compounds have been synthesized starting from (2S,3S)-3-phenylglycidol.

Pronounced biological effects¹⁾ as well as ferroelectric effects²⁾ are often recognized when hydrogen atoms are replaced by fluorine at an appropriate position. We report here a synthesis of some chiral fluorine compounds which are potentially useful as key building blocks for the construction of a variety of chiral fluorine materials starting from readily accessible $(2\underline{s},3\underline{s})$ -3-phenylglycidol³⁾ (1).

Scheme 1. (a) $iPr_2NH^{\bullet}(HF)_3$, 110 °C, 8 h; (b) $Me_2C(OMe)_2$, PPTS, acetone, r.t.; (c) 10% HCl-THF (1:5 v/v), r.t.; (d) (i) $NaIO_4$, aq. MeOH, 0 °C, (ii) $NaBH_4$, 0 °C.

Heating a mixture of the epoxide⁴⁾ 1 and diisopropylamine trihydrofluoride^{5,6} (5 equiv.) at 110 °C afforded the fluorodiol 2 in 44% yield as an inseparable mixture of two epimers. None of isolable fluorinated materials could be formed when other fluorinating agents such as hydrogen fluoride pyridine complex,⁷⁾ cesium fluoride,⁸⁾ tetrabutylammonium fluoride,⁹⁾ and silicon tetrafluoride¹⁰⁾ were used in place of diisopropylamine trihydrofluoride. The mixture formed the acetonide which could be readily separated by silica gel column chromatography to give the inversion product¹¹⁾ $(2\underline{S},3\underline{R})$ -3, $[\alpha]_D^{25}$ -0.19° (c 2.10, CHCl₃), and the retention product¹¹⁾ $(2\underline{S},3\underline{S})$ -4, $[\alpha]_D^{26}$ +33.55° (c 2.40, CHCl₃), in yields of 88 and 11%. The stereochemistry of the acetonides was confirmed by correlating them with the known (\underline{S}) -2-fluoro-2-phenylethanol¹²⁾ (7), respectively. Thus, acid hydrolysis of 3 gave

1690 Chemistry Letters, 1989

the $(2\underline{S}, 3\underline{R})$ -fluorodiol 5, mp 67-68 °C, $[\alpha]_D^{27}$ -19.91° (c 2.24, CHCl₃), quantitatively. Similarly, 4 gave the (2S,3S)-fluorodiol 6, $[\alpha]_D^{22}$ +37.39° (c 2.33, CHCl₃), quantitatively. Upon sequential periodate cleavage and borohydride reduction in the same flask both of the above diols yielded the enantiomeric 2-fluoro-2-phenylethanols 7, respectively. Thus, $(2\underline{S},3\underline{R})$ -5 afforded (\underline{R}) -7, $[\alpha]_D^{24}$ -51.75° (c 5.07, CHCl₃), in 92% yield and $(2\underline{S},3\underline{S})-6$ afforded $(\underline{S})-7$, $[\alpha]_D^{26}+50.46^{\circ}$ (c 4.72, CHCl₃), in 77% yield.

Scheme 2.

(a) $SOCl_2$, CCl_4 , r.t. then $RuCl_3$ ' $3H_2O$, $NaIO_4$, aq. MeCN, 0 °C; (b) n-Bu₄NF (2 equiv.), THF, r.t.

The second fluorine could also be introduced at C₁-center via the cyclic sulfate intermediate employing the method developed by Gao and Sharpless. 13) Thus, the fluorodiol 5 was first transformed into the cyclic sulfate 10, $[\alpha]_D^{25}$ +8.21° (c 1.10, CHCl₃), in 55% yield, with thionyl chloride followed by ruthenium oxide. On reaction with tetrabutylammonium fluoride 10 furnished 1,3-difluoro-3-phenyl-2propanol 13, $[\alpha]_D^{26}$ +19.80° (c 3.77, CHCl₃), in 82% yield. The same procedure could also transformed two optically pure diols ${\bf 8}$ and ${\bf 9}$, readily accessible $^{1\,4\,)}$ from ${\bf 1}$, into the corresponding terminal fluorides 14, $[\alpha]_D^{27}$ +10.97° (c 1.68, CHCl $_3$), and 15, $[\alpha]_D^{29}$ -116.38° (c 1.54, CHCl₃), in 94 and 98% overall yields via the corresponding cyclic sulfates 11, mp 71-71.5 °C, $[\alpha]_D^{29}$ +6.44° (c 0.96, CHCl₃), and 12, mp 55-55.5 °C, $[\alpha]_D^{27}$ +38.04° (c 1.20, CHCl₃), respectively.

References

- Cf. M. Schlosser, Tetrahedron, 34, 3 (1978); N. Ishikawa, Kagaku To Seibutsu, 1)
- 22, 93 (1984). Cf. D. M. Walbu, H. A. Razavi, N. A. Clark, and D. S. Parmar, J. Am. Chem.
- 3)
- Cf. D. M. Walbu, H. A. Razavi, N. A. Clark, and D. S. Parmar, J. Am. Chem. Soc., $\frac{110}{1}$, 8686 (1988).

 Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune, and K. B. Sharpless, J. Am. Chem. Soc., $\frac{109}{5}$, 5796 (1987).

 Optically pure material, mp $50-\overline{51}$ °C, $[\alpha]_D^{26}$ -50.4° (c 2.4, CHCl₃), was used. G. Aranda, J. Jullien, and J. A. Martin, Bull. Soc. Chim. Fr., $\underline{1965}$, 1890; $\underline{1966}$, 2850; R. Cardaix, and J. Jullien, ibid., $\underline{1969}$, 2721.

 M. Muehlbacher and C. D. Poulter, J. Org. Chem., $\underline{53}$, 1026 (1988).

 M. Shimizu and H. Yoshioka, Tetrahedron Lett., $\underline{28}$, 3119 (1987).

 K. Makino and H. Yoshioka, J. Fluorine Chem., $\underline{35}$, 677 (1987).

 M. Shimizu, E. Tanaka, and H. Yoshioka, J. Chem. Soc., Chem. Commun., $\underline{1987}$, 136. 5)
- 6)
- 7)
- 8)
- 9) 136.
- 10)
- M. Shimizu and H. Yoshioka, J. Med. Chem., 29, 4101 (1988). Relative stereochemistry could be assigned based on H-NMR spectra of their acetonides which show two acetonide methyls at δ 1.34 and 1.45 as <u>broad</u> two singlets for the inversion (erythro) product, while at 1.40 and 1.48 as sharp two singlets for the retention (threo) product. The same behavior was observed in other 3-substituted-3-phenyl-1,2-propanediols without exception (more than 20 examples have been examined).
- S. Watanabe, T. Fujita, Y. Usui, and T. Kitazume, J. Fluorine Chem., 31, 247 12) (1986).
- 13) Y. Gao and K. B. Sharpless, J. Am. Chem. Soc., 110, 7538 (1988).
- S. Takano, M. Yanase, and K. Ogasawara, Heterocycles, 29, 249 (1989). 14)

(Received July 7, 1989)